

Team 1912 Combustion
Ignition Team Manual

An Introduction to FIRST LabVIEW

Written by Rachel Holladay

Programming in FIRST

Language Choices – LabVIEW, Java, C++

Used for Robot Control -
Autonomous: decisions made based on senors

or preprogrammed movements
Tele-op: decisions made based on operator

input from the drivers

Two part System

� Front Panel -
� Looks like a display board, user interface
� Controls allow you to input data
� Indicator allow you to extract data

� Block Diagram -
� Home to the actual code
� Full of loops, conditionals, statements
� Most of the work is done here

General Structure

� Graphical, object are represented by icons
� Circuitry system – data follows along wires
� VI – 'Visual Instruments'
� “Easy to learn, hard to master”

 Basics: WPI Library

� Created by the
Worcester
Polytechnic Institute

� Contains all the
specialty FIRST
subVIs

� Includes eight
subcategories -

� Robot Drive
� Sensors
� Acuators
� Driver Station
� Camera
� Communications
� Utilities

Framework

� The main structure that holds FRC code
together, allows it to run smoothly on the robot
etc.

� You must work within the framework and YOU
SHOULD NEVER EDIT THE FRAMEWORK

� Otherwise the FMS (field management system)
will be unable to connect to you robot and it will
not move. Ever.

Project Explorer

� All files are stored in
pre-made projects

� Acts as file directory
� Holds all files needed

for robot control
� All specialty made Vis

must be added

Vis: Robot Main

� The main combining point of focus for the
project

� Should not be edited under any circumstances
� Mainly helps the FMS system understand and

runs the code
� DO NOT EDIT THIS

“Robot Main”

VIs- Begin

� “Called once at beginning, to open I/O, initialize
sensors and any globals, load settings from a
file, etc.”

� First thing run on robot boot up
� Opens and assigns all variables and hardware

� EX) Opens a joystick and assigns it to USB 1
� EX) Opens a motor and assigns it to PWM 1 with a

true inversion

“Begin”

VIs- Finish

� “Called before exiting, so you can save data,
clean up I/O, etc.”

� Doesn't actually run in competition
� Does the inverse of begin, it closes everything

� EX) Closes the joystick, motor, etc.
� If you open something in Begin, close it in

Finish, it's just neat practice

VIs- Autonomous

� “Automatically started with the first packet of
autonomous and aborted on the last packet.
Write this Team VI to loop for the entirety of the
autonomous period.”

� Runs autonomous code for 15 second period
� Can either be based on sensor input or based

on dead reckoning
� Framework provides an example of a simple

dead reckoning driving maneuver

VIs - Tele-Op

� “Called each time a teleop DS packet is
received and robot is enabled.”

� Main body – hold Tele-Op code
� Normally holds drive code and any Challenge

related code, such as an arm or kicker
� Framework provides arcade drive

“Tele-Op”

VIs – Timed Tasks

� “Called each time a teleop DS packet is
received and robot is enabled.”

� Also called Periodic Tasks
� Runs during Autonomous and Tele-Op
� Great for things you want running for both

� EX) This is where you enable a compressor
� Some people heavily use Tele-Op, others prefer

Timed Tasks. Its a personal thing really

“Timed Tasks”

VIs- Vision

� “A parallel loop that acquires and processes
camera images.”

� Holds any code related to your camera
� Often gets neglected because the camera is a

very commonly neglected element
� Framework provides a camera feed on the

dashboard, which is a neat feature

“Vision”

The Re-Imaging Tool

� Used to wipe/clean
the cRIO clean of
software

� Often fixes corrupted
files or helps restore
the cRIO to the
default, blank slat

� Assigns robot IP
address (10.xx.yy.2)

� Puts code on the
robot only temporarily

� Code will be lost once
the robot is turned off

� Great for when only
testing code

� Code can be pushed
with the run arrow an
infinite amount of
times

� Builds a package of the code and then deploys
the code on to the robot

� Will stay on the robot permanently even after
turned off

� Does take a few minutes to do
� An executable must run for competition
� To remove or change a new executable must

be pushed down or the cRIO must be re-
imaged

Making an Executable

Driver Station

� Used to enable and control the robot
� Various tabs for a variety of indicators
� The robot must have communications and code

before enabled and can run

Dashboard

� Gives more indicators including a camera
image feed. You can create a custom
dashboard to view particular barometers

Classmate Clamshell

� A smaller portable computer given in the KoP
� Two mode of operation:

� Developer: acts as a regular computer
� Driver Station: automatically pulls up the Driver

Station and Dashboard. Used in competition
� This computer should not be used as the main

programming laptop. A separate computer
should be used.

Good Practices

� Keep I/O log for documentation
� Limit closed loop and sensor control
� Plan out code before coding
� When possible, break things into steps
� The best programmer understands their

mechanical environment and is embedded
within the design and implementation process.
That and (hopefully) stays on schedule..

Tip Jar

� An excellent way to teach yourself LabVIEW is
through a series of videos produced by NI, the
Tip Jar. This useful set of almost 20 videos
includes topics that range from "Debugging
Your FRC code" to "LabVIEW intro for C++
Programmers"

� http://www.lvmastery.com/tipjar

